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Interband spectrum of weakly coupled stochastic lattice Ginzburg-Landau models
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We analyze the excitation spectrum of the generator associated with the relaxation rate to equilibrium in
weakly coupled stochastic Ginzburg-Landau models on a spatial latticeZd. The spectrum has a quasiparticle
interpretation. Depending ond and on the specific interaction, by solving the Bethe-Salpeter equation in the
ladder approximation, we show the existence of a stable particle above the upper envelope of the two-particle
band, possessing a concave dispersion curve. This result furthers our knowledge about the spectrum of the
stochastic dynamics generator.
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I. INTRODUCTION

We analyze the excitation spectrum of the generator a
ciated with the relaxation rate to equilibrium in weak
coupled stochastic lattice Ginzburg-Landau~GL! models.
Such models can be used to describe the evolution o
order parameter in statistical mechanical systems@1,2#. Re-
cently, much attention has been paid to understand the
siparticle structure of the stochastic dynamics generato
these models@3–7#. In these works, the picture of a massi
particle and a bound state below the two-particle thresh
~the bottom of the first band! was established, depending o
the space dimensiond, and on specific conditions on th
interaction. In the present report, we show the existence
stable particle above the top of the first band, with a conc
dispersion for small momentum.

II. MODEL AND RESULTS

We consider a lattice of unbounded real continuous s
variablesw(xW ), xWPZd. For timetPR, a stochastic dynamic
is introduced by a Langevin type equation

]w

]t
~ t, xW !52

1

2

d

dw~ t,xW !
A„w~ t, xW !…1h~ t, xW !,

w~xW , 0!5c~xW !, ~1!

wherec(xW ) is some initial condition,A is the system action
and $h(t, xW )%, xWPZd, tP@0,`) is a family of Gaussian
white-noise processes with expectationsE„h(t, xW )…50 and
E„h(t, xW )h(t8, yW )…5d(t2t8)dxW ,yW . The action is of the GL
type, i.e.,

A„w~xW !…5 (
xWPZd

H 1

2 F(
i 51

d

„w~xW1eW i !2w~xW !…21m2w~xW !2G
1lP„w~xW !…J , ~2!
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eW i is the unit vector along thei th coordinate;P is an even
polynomial of degree 2N, bounded from below and startin
with a quartic term;m.0 andl>0.

The dynamics introduced by Eq.~1! for the Markov pro-
cessw(t)5w(t, xW ) is associated with a Markov semigrou
and leaves invariant the Gibbs probability distributiondm
5e2A(w)dw/normalization defined by the action~2!. Pre-
cisely, the time evolution of any functionf of the spin con-
figuration w(xW ) is given by f t(c)5E( f @w(t)#), with w(t
50)5c(xW ). It follows that f t is determined by the Markov
semigroup exp(2tB) with generatorB, for f 5 f ($w(xW )%),
given by

B f52
1

2 (
xWPZd

F d2

dw~xW !2 f 2
dA

dw~xW !

d f

dw~xW !G .
The spectrum ofB is related to decay rates of correlatio
functions of an imaginary time quantum field theory throu
a Feynman-Kac formula~see@6,7#!. Rather than analyze th
spectrum ofB, it is suitable to consider the unitarily equiva
lent Schro¨dinger Hamiltonian

H52
1

2 (
xWPZd

d2

dw~xW !2 1
1

4 (
xWPZd

F1

2 S dA

dw~xW ! D
2

2
d2A

dw~xW !2G
52

1

2 (
xWPZd

d2

dw~xW !2 1
1

8 (
xWPZd

w~xW !@~2D1m2!2w#~xW !

1
l

4 (
xWPZd

@~2D1m2!w#~xW !P8„w~xW !…

1 (
xWPZd

Fl2

8
P8„w~xW !…22

l

4
P9„w~xW !…2

~2d1m2!

4 G .
Here, 2D is the Laplacian (2Dw)(xW )52dw(xW )
2( uxW2yW u51w(yW ). The lattice translation operatorT(xW )
5exp@2iPW •xW # commutes withH, which is additively renor-
malized so that its spectrum is positive and starts at zero.
analyze the joint spectrum ofH, PW , wherePW is the momen-
tum.

The above infinite-lattice formulas are formal. In@7#, it
was rigorously shown how to define them starting from t
©2002 The American Physical Society02-1
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finite-lattice finite-time model and then taking the thermod
namic limit using a cluster expansion.

For l50, we have a quasiparticle interpretation for t
spectrum. Spectral points are denoted by (E,pW ), E>0 and
pW P@2p,p#d, and (E,0W ) is referred to as a mass. In additio
to the vacuum (0,0W ), we have a quasiparticle energ
momentum ~e-m! spectrum „E0(pW )[El50(pW ),pW …, where
E0(pW ) is the isolated dispersion curveE0(pW )5(d

i 51(1
2cospi)1m2/2, with massm2/2. The rest of the spectrum i
given by øn>2„E0,n(pW ),pW … with E0,n(pW )5( j 51

n E0(pW j ),
( j 51

n pW j5pW , i.e., the energy-momentum spectrum ofn non-
interacting quasiparticles with total momentumpW . For n
52, the spectrum corresponds to a band. For instance
d51, the band has lower envelopeE0,2

↓ (pW )54 sin2(p/4)
1m2, and upper envelopeE0,2

↑ (pW )54 cos2(p/4)1m2. For
sufficiently largem andn>3, andd, there is also band spec
trum but, for sufficiently largen, the bands overlap.

To see what is known forl.0, we first observe that the
imaginary-time quantum field theory associated with
model is Gaussian forl50, and has covariance@2d2/dt2

1(2D1m2)2#21. As in @6,7#, the G-L interaction in Eq.~2!
is taken asP(w)5(n52

N @an /(2n)! #:w2n:, with aN.0 and
: : meaning the Wick order with respect to the above co
riance. With this, first within the ladder approximation in@6#
and then analyzing the complete model in@7#, if m is fixed
large andl chosen sufficiently small, it is shown that a qu
siparticle persists with dispersion curveEl(pW )>El(0W )
5m2/21O(l2). The mass spectrum up to the two-partic
threshold mass 2El(0W ) was also determined. More precise
for d51, 2 and ifa2,0, there is a single pointMb in the
mass spectrum intervalI l5(El(0W ),2El(0W )), located near
2El(0W ). The bound state is absent and there is no m
spectrum inI l if a2.0, for anyd, or for a2,0 andd>3.

Here, we consider the mass spectrum in the region
tween the first and the second bands. In the ladder appr
mation, and fora2.0 andd51, 2, we find that there is mas
spectrumMa above and close to the mass of the upper
velope of the first band. Moreover, for smallupW u, we show
that the associated dispersion curve for this interband sta
concave while that of the bound state below the first ban
convex. The results are depicted in Fig. 1.

III. SPECTRAL ANALYSIS

To obtain the above results, we recall from@6,7# that the
e-m spectrum associated with the two-particle states oc
as ak0 singularity in the Fourier transform of a partiall
truncated four-point correlation expressed in terms of mix
relative coordinates~relative temporal center-of-mass coord
nates and relative spatial coordinates! D̃l(p, q, k), wherek

5(k0, kW ), k0PR, kWPTd, thed-dimensional torus.Dl is the
solution of the Bethe-Salpeter~BS! equation

Dl5Dl
01Dl

0KlDl ,

where, lettingSl(•,•) denote the two-point function for th
interacting model, Dl

0(x1 , x2 , x3 , x4)5Sl(x1 , x3)
03710
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Sl(x2 , x4)1Sl(x1 , x4)Sl(x2 , x3) and Dl(x1 , x2 , x3 , x4)
5Sl(x1 ,x2 , x3 , x4)2Sl(x1 , x2)Sl(x3 , x4), and
Sl(x1 , x2 , x3 , x4) is the four-point function.

The action ofD̃l on functionsf (p), with * dq meaning
*0

` dq0*Td dqW , is given by

~D̃l~k! f !~p!5E D̃l~p, q, k! f ~q!dq

and similarly forD̃l
0 and K̃l .

The determination of the spectrum in@6,7# above the one-
particle state and below the two-particle threshold is
stricted to total momentumkW50W , i.e., only to mass spectrum
Kl5(Dl

0)212(Dl)21 is the B-S kernel and we writeKl

5lL1l2K (2), wherelL is called the ladder approximatio
to Kl . Using the symmetries ofKl under interchange o
variables, L̃l is calculated to be L̃(p,q,k)
52(3/4)a2@E0(pW )1E0(qW )1E0(pW 2kW )1E0(qW 2kW )#, and
has rank two. Forf (p) depending only onpW , we have

„D̃l
0~k! f …~p!5~2p!d11F S̃lS k0

2
2p0, pW D

3S̃lS k0

2
1p0,kW2pW D f ~kW2pW !

1S̃lS k0

2
1p0,pW D

3S̃lS k0

2
2p0,kW2pW D f ~pW !G

and

~ L̃l~k!D̃l
0~k! f !~p!

FIG. 1. The approximate e-m spectrum for the cased51 and
m2516. Fora2,0, only the isolated bound-state lower-dispersi
curve appears; fora2.0, only the isolated upper curve appears.
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52
3a2

4
~2p!d11FE0~pW , kW !E G~uW , k! f ~uW !duW

1E E0~uW , kW !G~uW , k! f ~uW !duW G ,
whereE0(uW , kW )5(1/2)@E0(uW )1E0(uW 2kW )# and

G~uW ,k!5E S̃lS k0

2
1u0,uW D S̃lS k0

2
2u0,kW2uW Ddu0. ~3!

Thus, we can write

„f ,D̃l~k! f …52~2p!d11E f̄ ~pW !G~pW , k!g~pW , k!dpW , ~4!

whereg(•,k)5@12(2p)22(d11)lL̃(k)D̃l
0(k)#21f (•).

Now, recalling from@6,7# that k0 singularities of Eq.~4!
are points in the e-m spectrum, we determine thek0 singu-
larities of G(pW , k) andg(pW , k), for Im k0P(0,3m2/2). From
@6,7#, S̃l(p) has the representation

S̃l~p!5
cl~pW !

~p0!21El~pW !2 1E
m2

` 2E

~p0!21E2 dhl8~E, pW !,

wherecl(pW )511O(l2) anddh8 has support on odd state
with more than one particle. Then, performing thep0 inte-
gration in Eq.~3!, we obtain

G~pW , k!5pcl~pW !cl~kW2pW !
El~pW !1El~kW2pW !

El~pW !El~kW2pW !

3
1

~k0!21@El~pW !1El~kW2pW !#2
1G1~pW , k!,

~5!

where G1(pW , k) is analytic in Imk0P(0,3m2/2). From Eq.
~5!, we see that thek0 singularity due toG(pW , k) in Eq. ~4! is
the first band.

Concerningg(•,k), the k0 singularities come from the
zeroes of 12m6(k) where m6(k) are the eigenvalues o
s

03710
(2p)2(d11)lL̃(k)D̃0(k) on the space of functions generate
by constants andE(pW , k). m6(k) are found to be

m6~k!523a2~2p!2~d11!l@a~k!6„b~k!g~k!…1/2#,

where

$a~k!, b~k!, g~k!%

5E G~qW ,k!$E0~qW , k!,1,@E0~qW , k!#2%dqW .

We now takek0 on the positive imaginary axis and let
approach the lower envelope of the band from below~a, b,
and g are positive! to obtain the bound-state massMb for
m1(k)51, for a2,0 and d51, 2. Letting it approach the
upper envelope from above~a, b, andg are now negative!,
m2(k)51 gives us the massMa for a2.0 andd51, 2. For
d>3, there are no mass spectral points above or below
first band.

To determine the behavior of the bound-state mass dis
sion curve nearkW50W , we defineF(x, kW )5m1(k05 ix,kW )
21. Thus,F(Mb ,kW )50, and the dispersion curvex(kW ) sat-
isfies F„x(kW ),kW…50. Calculating dx(kW )/dkj5@]F/]kj #/
@]F/]x#, j 51, . . . ,d, a detailed analysis shows tha
dx(kW )/dkj is positive forkj positive and small. Smoothnes
and the fact that (dx/dkj )(kW50W )50 imply thatx(kW ) is con-
vex for smallukW u. A similar analysis leads to the concavity o
the dispersion curve associated withMa , for small ukW u.

IV. CONCLUDING REMARKS

We have determined the interband e-m spectrum for
namic stochastic lattice Landau-Ginzburg models with sm
polynomial interaction with equilibrium states in the singl
phase region. The determination of the spectrum in mod
with equilibrium states in the multiphase region, critic
models, and models in the large-noise regime is of intere
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