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Interband spectrum of weakly coupled stochastic lattice Ginzburg-Landau models
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We analyze the excitation spectrum of the generator associated with the relaxation rate to equilibrium in
weakly coupled stochastic Ginzburg-Landau models on a spatial l&fticEhe spectrum has a quasiparticle
interpretation. Depending oth and on the specific interaction, by solving the Bethe-Salpeter equation in the
ladder approximation, we show the existence of a stable particle above the upper envelope of the two-particle
band, possessing a concave dispersion curve. This result furthers our knowledge about the spectrum of the
stochastic dynamics generator.
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I INTRODUCTION éi is the unit vector along théeth coordinate;P is an even

. polynomial of degree B, bounded from below and starting
We analyze the excitation spectrum of the generator assqQgiih 5 quartic termm=0 and\=0.
ciated with the relaxation rate to equiliborium in weakly — The dynamics introduced by E€1) for the Markov pro-
coupled stochastic lattice Ginzburg—_Landé(BL) quels. cesso(t)=o(t, X) is associated with a Markov semigroup
Such models can be used to describe the evolution of ag,q eaves invariant the Gibbs probability distributidp
order parameter |n_stat|st|cal mechanlcal syst¢ing|. Re- =e~A@dg/normalization defined by the action(2). Pre-
cgntly, lmuch attennofn r;]as beerr]w pe_ud(;co und_erstand the qu.@isely, the time evolution of any functiohof the spin con-
siparticle structure of the stochastic dynamics generator i, . .=«o0 o) is qi _ :
. ; ¢(X) is given by f E(f[e(t)]), with ¢(t
these model§3—7]. In these works, the picture of a massive :go): W(X) _( It)follo?/vs that};t Eg@etersnine(d)bg/ the Mar(kov

particle and a bound state below the two-particle threshol ; : i >
(the bottom of the first bandvas established, depending on emigroup expttB) with generatorB, for =f({¢(x)}),

the space dimensiod, and on specific conditions on the given by

interaction. In the present report, we show the existence of a 1 2 52 SA Sf

stable particle above the top of the first band, with a concave Bf=—2 ——f— = —|.
; ; 250 [60(0% (%) de(X)

dispersion for small momentum.

The spectrum oB is related to decay rates of correlation
Il. MODEL AND RESULTS functions of an imaginary time quantum field theory through
a Feynman-Kac formulésee[6,7]). Rather than analyze the
r%pectrum ofB, it is suitable to consider the unitarily equiva-
lent Schralinger Hamiltonian

We consider a lattice of unbounded real continuous spi
variablesp(X), Xe Z9. For timet e R, a stochastic dynamics
is introduced by a Langevin type equation

s ’ 1 52 +1E 1/ 6A \2 &°A
140 1 =—— ——t - Z S A
Tt R = Z " 274 09(X)° 474 |2\ 6p(X) S¢(X)
ot (t, X) 2 So(LR) Ale(t, X))+ 5(t, X), Xe? Xe?
LS 2ol emi-armram
. - =—= —=+ X)[(—A+m X
(%, 0)= ¥(X), (1) 250 60(0)? " 85 ¢ ¢
wherew(il is sgmedinitial conditionA is the system action +% S [(—A+m)e]()P (o(%))
and {7(t,X)}, XeZ° te[0,») is a family of Gaussian xe7d
white-noise processes with expectatida&y(t, X))=0 and \2 N (2d+m?)
E(n(t, X) n(t", ¥))=8(t—t") 8. The action is of the GL + > P e3)2= S Pe(x) -
type, i.e., il 8 4 4
1[4 Here, —A is the Laplacian {A¢)(X)=2d¢(X)
A((P(*))Z»Z [E{E (@(X+8)— (X))2+m2e(X)2 —E‘g_y|:&¢(9). The lattice translation operatoil (X)
iy =1 =exfd —iP-X] commutes withH, which is additively renor-
malized so that its spectrum is positive and starts at zero. We
+)\P(go(>?))], 2 analyze the joint spectrum of, P, whereP is the momen-
tum.
The above infinite-lattice formulas are formal. [IA], it
*Email address: veiga@icmc.sc.usp.br was rigorously shown how to define them starting from the
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finite-lattice finite-time model and then taking the thermody-
namic limit using a cluster expansion.
For A=0, we have a quasiparticle interpretation for the

spectrum. Spectral points are denoted Byp), E=0 and 201 |
pe[ -, m]% and E,0) is referred to as a mass. In addition <:>
to the vacuum (OTD we have a quasiparticle energy- E i

momentum (e-m) spectrum (Eqo(p)=E,-o(p),p), where

Eo(p) is the isolated dispersion curvEqy(p)==9_,(1

—cosp)+n?/2, with massm?/2. The rest of the spectrum is [ 7]

given by U,=2(Eon(P).P) With Eqn(P)=={_; Eo(P),

E?:l p;=p, i.e., the energy-momentum spectrumnofion-

interacting quasiparticles with total momentupa For n

=2, the spectrum corresponds to a band. For instance, for o E]

d=1, the band has lower envelopéé,’z(ﬁ)=4 sirf(p/4)

+m?, and upper envelop&), ,(p)=4 cog(p/4)+m?. For P

sufficiently largem andn=3, andd, there is also band spec- k|G, 1. The approximate e-m spectrum for the cdsel and

trum but, for sufficiently largen, the bands overlap. m?=16. Fora,<0, only the isolated bound-state lower-dispersion
To see what is known fox>0, we first observe that the curve appears; foa,>0, only the isolated upper curve appears.

imaginary-time quantum field theory associated 2witr; the

model is Gaussian fox =0, and has covariande-d</dt

+(—A+m?)?2]" 1. Asin[6,7], the G-L interaction in Eq(2) i”gfxi(“)z;z();z) )i4)s)\s€)(()1(,2;(:)3)3)\(i2?)(3f(xl’ X2, X3’;?])d

is taken _asp(h@)\jvlzwk=2[§n/(2.”r)]!]:¢2”:= WithhaN>bO and g (x,, x,, Xs, X,) is the four-point function.

. : meaning the Wick order with respect to the above cova- . = , . .

riance. With this, first within the ladder approximation[ 8] wzh‘é ac'gop .OfD% on tf)uncnonsf(p), with J dg meaning

and then analyzing the complete model#, if mis fixed Jodd'f1edq, is given by

large and\ chosen sufficiently small, it is shown that a qua-

siparticle persists with dispersion curvi, (p)=E,(0) = N

=m?/2+ O(\?). The mass spectrum up to éthe twoi\particle (Dadot )(p)—f Di(p. g, k)f(a)dq

threshold mass E)\(G) was also determined. More precisely,

for d=1, 2 and ifa,<0, there is a single poin¥, in the 549 similarly forD? andK, .

mass spectrum interval, = (E, (0),2E,(0)), located near The determination of the spectrum([i, 7] above the one-
2E,(0). The bound state is absent and there is no masparticle state and below the two-particle threshold is re-
spectrum inl, if a,>0, for anyd, or for a,<0 andd=3. stricted to total momenturk=0, i.e., only to mass spectrum.

Here, we consider the mass spectrum in the region bez(x=(D2)*1—(Dx)*l is the B-S kernel and we writ&,
tween the first and the second bands. In the ladder approxi= \ |+ \2K (), where\L is called the ladder approximation
spectrumM , above and close to the mass of the upper en
velope of the first band. Moreover, for sm&fl|, we show B . N _ - L -
that the associated dispersion curve for this interband state js (3/4)az[ Eo(P) + Eo(d) + EO_(p_ k) + EOSq_ k)], and
concave while that of the bound state below the first band i§2S rank two. Fof (p) depending only o, we have
convex. The results are depicted in Fig. 1.

variables, L, is calculated to be L(p,q.k)

0

~ ~ [k
B F)(p)=(2m)* &(5—p°. ﬁ)

IIl. SPECTRAL ANALYSIS

kO

To obtain the above results, we recall fr¢f 7] that the R R
5 +pK=p|f(K—p)

e-m spectrum associated with the two-particle states occurs X
as ak® singularity in the Fourier transform of a partially

>g)l

truncated four-point correlation expressed in terms of mixed ~ [K° 0«

relative coordinategelative temporal center-of-mass coordi- +S\|5 PP

nates and relative spatial coordinat&s, (p, g, k), wherek 0

=(k° k), K°e R, ke T, thed-dimensional torusD, is the <3, 5 - 00 K— ﬁ) f(ﬁ)}
solution of the Bethe-SalpetéBS) equation

Dx:D2+D2KxD>\' and

where, lettingS, (-,-) denote the two-point function for the ~ ~0
interacting model,  D(Xq, X, X3, Xg) =S\ (X1, X3) (LA(K)DX(K)f)(p)
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3y | ~ o (27r) " @TO\L(k)DO(k) on the space of functions generated
== @m™ &P, k) [ G4, kf(d)da by constants and(p, k). (k) are found to be
- +(k)=—3a,(2m) "I\ a(k) = (B(k) y(k))?],
+f &, K)G(T, K f(0)dd|, a 2 Py
where
where&y(U, k) = (1/2) Eq(t) + Eo(i—Kk)] and {a(k), B(K), y(K)}
~ [K° s -
G(a,k):f S, E+u°,ﬁ)s)\<?—u°,k—ﬁ)du°. (3) :f G(G,k){&(d, k),1[ (G, k) 12}d .

Thus, we can write We now takek® on the positive imaginary axis and let it

approach the lower envelope of the band from belawg,

and y are positive to obtain the bound-state mabs, for

pni(k)=1, for a,<0 andd=1, 2. Letting it approach the

L upper envelope from above, B, andy are now negative

whereg(-,k)=[1—(27) 2@TO\T(K)DO(k)]~*f(-). w_(k)=1 gives us the mag¥ , for a,>0 andd=1, 2. For
Now, recalling from[6,7] thatk® singularities of Eq(4) d=3, there are no mass spectral points above or below the

are points in the e-m spectrum, we determine kBesingu-  first band.

(f,5A<k>f>=2<2w>d+1fT(ﬁ)G(ﬁ, g(p, K)dp, (4)

larities of G(, k) andg(p, k), for Imk°e(0,3m?/2). From To determine the behavior of the bound-state mass disper-
[6,7], S,(p) has the representation sion curve neak=0, we defineF(x, k)= (k°=iy,k)
~ c\(p) . oE -1 Thus,FSMP,R)=O, and the disper§ion (_:ur\ae(IZ) s_at-
S\(P)= — 2+J' so—=2d7n.(E, p), isfies F(x(k),k)=0. Calculating dy(k)/dk'=[dF/ak']/
(P)"+E\(P) m? (P)°+E [oFldx], j=1,...| d, a detailed analysis shows that

wherec, (5) =1+ O(\?) anddy’ has support on odd states dx(k)/dK! is positive f(_)rkJ; positive and small. Smoothness
with more than one particle. Then, performing th&inte-  and the fact thatdy/dk) (k=0)=0 imply thaty(k) is con-
gration in Eq.(3), we obtain vex for small|k|. A similar analysis leads to the concavity of

~ L the dispersion curve associated with, , for small|k|.
E\(P) +E\(k—P)

G(p, k) =mc,(P)cy(k—p)

Ex(ﬁ)E)\(E— 5) IV. CONCLUDING REMARKS
We have determined the interband e-m spectrum for dy-
« 1 +G4(P, k) namic stochastic lattice Landau-Ginzburg models with small
(K924 [E,(p) + EK(IZ— B)]2 LR polynomial interaction with equilibrium states in the single-

phase region. The determination of the spectrum in models
(5 with equilibrium states in the multiphase region, critical
where G,(, k) is analytic in ImkCe (0,3an%/2). From Eq. models, and models in the large-noise regime is of interest.
(5), we see that thk® singularity due taG(, k) in Eq. (4) is
the first band.

Concerningg(-,k), the k® singularities come from the This work was partially supported by Pronex, CNP(q, and
zeroes of - u-. (k) where u.(k) are the eigenvalues of FAPESP.
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